DNA-end capping by the budding yeast transcription factor and subtelomeric binding protein Tbf1.
نویسندگان
چکیده
Telomere repeats in budding yeast are maintained at a constant average length and protected ('capped'), in part, by mechanisms involving the TG(1-3) repeat-binding protein Rap1. However, metazoan telomere repeats (T(2)AG(3)) can be maintained in yeast through a Rap1-independent mechanism. Here, we examine the dynamics of capping and telomere formation at an induced DNA double-strand break flanked by varying lengths of T(2)AG(3) repeats. We show that a 60-bp T(2)AG(3) repeat array induces a transient G2/M checkpoint arrest, but is rapidly elongated by telomerase to generate a stable T(2)AG(3)/TG(1-3) hybrid telomere. In contrast, a 230-bp T(2)AG(3) array induces neither G2/M arrest nor telomerase elongation. This capped state requires the T(2)AG(3)-binding protein Tbf1, but is independent of two Tbf1-interacting factors, Vid22 and Ygr071c. Arrays of binding sites for three other subtelomeric or Myb/SANT domain-containing proteins fail to display a similar end-protection effect, indicating that Tbf1 capping is an evolved function. Unexpectedly, we observed strong telomerase association with non-telomeric ends, whose elongation is blocked by a Mec1-dependent mechanism, apparently acting at the level of Cdc13 binding.
منابع مشابه
Subtelomere-binding protein Tbf1 and telomere-binding protein Rap1 collaborate to inhibit localization of the Mre11 complex to DNA ends in budding yeast
Chromosome ends, known as telomeres, have to be distinguished from DNA double-strand breaks that activate DNA damage checkpoints. In budding yeast, the Mre11-Rad50-Xrs2 (MRX) complex associates with DNA ends and promotes checkpoint activation. Rap1 binds to double-stranded telomeric regions and recruits Rif1 and Rif2 to telomeres. Rap1 collaborates with Rif1 and Rif2 and inhibits MRX localizati...
متن کاملSubtelomeric proteins negatively regulate telomere elongation in budding yeast.
The Tbf1 and Reb1 proteins are present in yeast subtelomeric regions. We establish in this work that they inhibit telomerase-dependent lengthening of telomere. For example, tethering the N-terminal domain of Tbf1 and Reb1 in a subtelomeric region shortens that telomere proportionally to the number of domains bound. We further identified a 90 amino-acid long sequence within the N-terminal domain...
متن کاملSubtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast.
Telomeric repeat-containing RNA (TERRA) has been implicated in the control of heterochromatin and telomerase. We demonstrate that yeast TERRA is regulated by telomere-binding proteins in a chromosome-end-specific manner that is dependent on subtelomeric repetitive DNA elements. At telomeres that contain only X-elements, the Rap1 carboxy-terminal domain recruits the Sir2/3/4 and Rif1/2 complexes...
متن کاملIdentification of transcriptional modules in budding yeast
One focus of postgenomic research concerns the regulation of gene expression through signal transduction and combinatorial control of gene transcription. Protein-protein interactions and protein-DNA interactions provide the dynamic backbones of regulatory networks which define the complex response of a cell to different environmental conditions. More recently, large scale experiments have resul...
متن کاملCdc13 telomere capping decreases Mec1 association but does not affect Tel1 association with DNA ends.
Chromosome ends, known as telomeres, have to be distinguished from DNA breaks that activate DNA damage checkpoint. Two large protein kinases, ataxia-teleangiectasia mutated (ATM) and ATM-Rad3-related (ATR), control not only checkpoint activation but also telomere length. In budding yeast, Mec1 and Tel1 correspond to ATR and ATM, respectively. Here, we show that Cdc13-dependent telomere capping ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 31 1 شماره
صفحات -
تاریخ انتشار 2012